
Gaussian Process Modeling 
of Large-Scale Terrain



Problem

Given set of points (x, y, z), establish a model to predict z = f(x, y).



Gaussian Process
● Determined by mean and covariance (kernel) functions
● Mean function can be assumed to be zero (in this case)
● Kernel function models correlation between input variables



Squared exponential kernel



Squared exponential kernel

stationary



Squared exponential kernel

exponential decay as 
distance increases



Squared exponential kernel

exponential decay as 
distance increases



Neural Network Kernel



Neural Network Kernel

non-stationary



Neural Network Kernel

Correlation increases with 
distance (until saturation)



Neural Network Kernel

Bounded at high and 
low inputs



Neural Network Kernel

Bounded at high and 
low inputs



Comparison



Non-stationary kernel?

Data will become skewed at large 
distance from origin



Non-stationary kernel?

Moving window

(implemented via k-d tree nearest 
neighbors)



Moving window

1. Necessary for kernel effectiveness



Moving window

1. Necessary for kernel effectiveness
2. Reduces computational overhead



Tom Price Dataset

135m 72m

13.8m

~1.8 million points



Tom Price Dataset



Tom Price Dataset



Kimberlite Mine Dataset

2.2 km

2.3 km

250 m

4,600 points



Kimberlite Mine Dataset



Kimberlite Mine Dataset



West Angelas Dataset

1.865 km

.511 km

190 m

534,460 points



West Angelas Dataset



West Angelas Dataset



My questions:

“A data set of N (for example, 1 million) points may be split into, for instance, n_train (say, 3,000) training 
points and n_test (say, 100,000) test points, and the remaining n_eval(897,000) are evaluation points. The 

training points are those over which the GP is learned, the test points are those over which the MSE is 
evaluated, and the evaluation points together with the training points are used to make predictions at the 

test points.”



My questions:

“As expected, it was found that the combined strategy performed best. The gradient-based optimization 
requires a good starting point or the optimizer may get stuck in local minima. The stochastic optimization 
(simulated annealing) provides a better chance to recover from local minima as it allows for “jumps” in the 

parameter space during optimization. Thus, the combination first localizes a good parameter 
neighborhood and then zeros-down on the best parameters for the given scenario.”


